/* * SPDX-FileCopyrightText: 2021-2025 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Unlicense OR CC0-1.0 */ #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "esp_system.h" #include "esp_log.h" #include "nvs_flash.h" #include "esp_bt.h" #include "driver/uart.h" #include "string.h" #include "stdio.h" // SPI相关代码已注释,改用UART通信 /* // SPI头文件条件包含,兼容不同ESP-IDF版本 // 如果编译错误,请尝试以下方法之一: // 1. ESP-IDF 4.x: #include "driver/spi_master.h" // 2. ESP-IDF 5.x: #include "driver/spi_host.h" #ifndef SPI_VERSION_DEFINED #define SPI_VERSION_DEFINED // 如果没有ESP_IDF_VERSION定义,假设是ESP-IDF 4.x #ifndef ESP_IDF_VERSION_VAL #define ESP_IDF_VERSION_VAL(major, minor, patch) (((major) << 16) | ((minor) << 8) | (patch)) #endif // 临时包含任意一个版本测试 #include "driver/spi_master.h" #endif */ #include "esp_gap_ble_api.h" #include "esp_gatts_api.h" #include "esp_bt_defs.h" #include "esp_bt_main.h" #include "esp_bt_device.h" #include "ble_spp_server_demo.h" #include "esp_gatt_common_api.h" #include "esp_timer.h" #if (CONFIG_EXAMPLE_ENABLE_RF_TESTING_CONFIGURATION_COMMAND) #include "rf_tesing_configuration_cmd.h" #endif // CONFIG_EXAMPLE_ENABLE_RF_TESTING_CONFIGURATION_COMMAND #define GATTS_TABLE_TAG "GATTS_SPP_DEMO" // UART相关全局变量已移至 uart_ens1.c // SPI相关代码已注释 /* // 全局SPI设备句柄和连接状态 spi_device_handle_t spi_handle; volatile bool ens1_connected = false; */ #define SPP_PROFILE_NUM 1 #define SPP_PROFILE_APP_IDX 0 #define ESP_SPP_APP_ID 0x56 #define SAMPLE_DEVICE_NAME "ESP_SPP_SERVER" //The Device Name Characteristics in GAP #define SPP_SVC_INST_ID 0 /// SPP Service static const uint16_t spp_service_uuid = 0xABF0; /// Characteristic UUID #define ESP_GATT_UUID_SPP_DATA_RECEIVE 0xABF1 #define ESP_GATT_UUID_SPP_DATA_NOTIFY 0xABF2 #define ESP_GATT_UUID_SPP_COMMAND_RECEIVE 0xABF3 #define ESP_GATT_UUID_SPP_COMMAND_NOTIFY 0xABF4 #define SPP_GATT_MTU_SIZE (512) #ifdef SUPPORT_HEARTBEAT #define ESP_GATT_UUID_SPP_HEARTBEAT 0xABF5 #endif #define BLUETOOTH_TASK_PINNED_TO_CORE (0) static const uint8_t spp_adv_data[23] = { /* Flags */ 0x02,0x01,0x06, /* Complete List of 16-bit Service Class UUIDs */ 0x03,0x03,0xF0,0xAB, /* Complete Local Name in advertising */ 0x0F,0x09, 'E', 'S', 'P', '_', 'S', 'P', 'P', '_', 'S', 'E', 'R','V', 'E', 'R' }; static uint16_t spp_mtu_size = SPP_GATT_MTU_SIZE; static uint16_t spp_conn_id = 0xffff; static esp_gatt_if_t spp_gatts_if = 0xff; QueueHandle_t spp_uart_queue = NULL; static QueueHandle_t cmd_cmd_queue = NULL; // 心跳功能已完全删除 static bool enable_data_ntf = false; static bool is_connected = false; static esp_bd_addr_t spp_remote_bda = {0x0,}; static uint16_t spp_handle_table[SPP_IDX_NB]; static esp_ble_adv_params_t spp_adv_params = { .adv_int_min = 0x20, .adv_int_max = 0x40, .adv_type = ADV_TYPE_IND, .own_addr_type = BLE_ADDR_TYPE_PUBLIC, .channel_map = ADV_CHNL_ALL, .adv_filter_policy = ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY, }; struct gatts_profile_inst { esp_gatts_cb_t gatts_cb; uint16_t gatts_if; uint16_t app_id; uint16_t conn_id; uint16_t service_handle; esp_gatt_srvc_id_t service_id; uint16_t char_handle; esp_bt_uuid_t char_uuid; esp_gatt_perm_t perm; esp_gatt_char_prop_t property; uint16_t descr_handle; esp_bt_uuid_t descr_uuid; }; typedef struct spp_receive_data_node{ int32_t len; uint8_t * node_buff; struct spp_receive_data_node * next_node; }spp_receive_data_node_t; static spp_receive_data_node_t * temp_spp_recv_data_node_p1 = NULL; static spp_receive_data_node_t * temp_spp_recv_data_node_p2 = NULL; typedef struct spp_receive_data_buff{ int32_t node_num; int32_t buff_size; spp_receive_data_node_t * first_node; }spp_receive_data_buff_t; static spp_receive_data_buff_t SppRecvDataBuff = { .node_num = 0, .buff_size = 0, .first_node = NULL }; static void gatts_profile_event_handler(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t *param); /* One gatt-based profile one app_id and one gatts_if, this array will store the gatts_if returned by ESP_GATTS_REG_EVT */ static struct gatts_profile_inst spp_profile_tab[SPP_PROFILE_NUM] = { [SPP_PROFILE_APP_IDX] = { .gatts_cb = gatts_profile_event_handler, .gatts_if = ESP_GATT_IF_NONE, /* Not get the gatt_if, so initial is ESP_GATT_IF_NONE */ }, }; /* * SPP PROFILE ATTRIBUTES **************************************************************************************** */ #define CHAR_DECLARATION_SIZE (sizeof(uint8_t)) static const uint16_t primary_service_uuid = ESP_GATT_UUID_PRI_SERVICE; static const uint16_t character_declaration_uuid = ESP_GATT_UUID_CHAR_DECLARE; static const uint16_t character_client_config_uuid = ESP_GATT_UUID_CHAR_CLIENT_CONFIG; static const uint8_t char_prop_read_notify = ESP_GATT_CHAR_PROP_BIT_READ|ESP_GATT_CHAR_PROP_BIT_NOTIFY; static const uint8_t char_prop_read_write = ESP_GATT_CHAR_PROP_BIT_WRITE_NR|ESP_GATT_CHAR_PROP_BIT_READ; #ifdef CONFIG_EXAMPLE_SPP_THROUGHPUT static const uint8_t spp_data_notity_char_prop = char_prop_read_notify; #else static const uint8_t spp_data_notity_char_prop = ESP_GATT_CHAR_PROP_BIT_READ|ESP_GATT_CHAR_PROP_BIT_INDICATE; #endif #ifdef SUPPORT_HEARTBEAT static const uint8_t char_prop_read_write_notify = ESP_GATT_CHAR_PROP_BIT_READ|ESP_GATT_CHAR_PROP_BIT_WRITE_NR|ESP_GATT_CHAR_PROP_BIT_NOTIFY; #endif ///SPP Service - data receive characteristic, read&write without response static const uint16_t spp_data_receive_uuid = ESP_GATT_UUID_SPP_DATA_RECEIVE; static const uint8_t spp_data_receive_val[20] = {0x00}; ///SPP Service - data notify characteristic, notify&read static const uint16_t spp_data_notify_uuid = ESP_GATT_UUID_SPP_DATA_NOTIFY; static const uint8_t spp_data_notify_val[20] = {0x00}; static const uint8_t spp_data_notify_ccc[2] = {0x00, 0x00}; ///SPP Service - command characteristic, read&write without response static const uint16_t spp_command_uuid = ESP_GATT_UUID_SPP_COMMAND_RECEIVE; static const uint8_t spp_command_val[10] = {0x00}; ///SPP Service - status characteristic, notify&read static const uint16_t spp_status_uuid = ESP_GATT_UUID_SPP_COMMAND_NOTIFY; static const uint8_t spp_status_val[10] = {0x00}; static const uint8_t spp_status_ccc[2] = {0x00, 0x00}; #ifdef SUPPORT_HEARTBEAT ///SPP Server - Heart beat characteristic, notify&write&read static const uint16_t spp_heart_beat_uuid = ESP_GATT_UUID_SPP_HEARTBEAT; static const uint8_t spp_heart_beat_val[2] = {0x00, 0x00}; static const uint8_t spp_heart_beat_ccc[2] = {0x00, 0x00}; #endif ///Full HRS Database Description - Used to add attributes into the database static const esp_gatts_attr_db_t spp_gatt_db[SPP_IDX_NB] = { //SPP - Service Declaration [SPP_IDX_SVC] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&primary_service_uuid, ESP_GATT_PERM_READ, sizeof(spp_service_uuid), sizeof(spp_service_uuid), (uint8_t *)&spp_service_uuid}}, //SPP - data receive characteristic Declaration [SPP_IDX_SPP_DATA_RECV_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&char_prop_read_write}}, //SPP - data receive characteristic Value [SPP_IDX_SPP_DATA_RECV_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&spp_data_receive_uuid, ESP_GATT_PERM_READ|ESP_GATT_PERM_WRITE, SPP_DATA_MAX_LEN, sizeof(spp_data_receive_val), (uint8_t *)spp_data_receive_val}}, //SPP - data notify characteristic Declaration [SPP_IDX_SPP_DATA_NOTIFY_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&spp_data_notity_char_prop}}, //SPP - data notify characteristic Value [SPP_IDX_SPP_DATA_NTY_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&spp_data_notify_uuid, ESP_GATT_PERM_READ, SPP_DATA_MAX_LEN, sizeof(spp_data_notify_val), (uint8_t *)spp_data_notify_val}}, //SPP - data notify characteristic - Client Characteristic Configuration Descriptor [SPP_IDX_SPP_DATA_NTF_CFG] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_client_config_uuid, ESP_GATT_PERM_READ|ESP_GATT_PERM_WRITE, sizeof(uint16_t), sizeof(spp_data_notify_ccc), (uint8_t *)spp_data_notify_ccc}}, //SPP - command characteristic Declaration [SPP_IDX_SPP_COMMAND_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&char_prop_read_write}}, //SPP - command characteristic Value [SPP_IDX_SPP_COMMAND_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&spp_command_uuid, ESP_GATT_PERM_READ|ESP_GATT_PERM_WRITE, SPP_CMD_MAX_LEN, sizeof(spp_command_val), (uint8_t *)spp_command_val}}, //SPP - status characteristic Declaration [SPP_IDX_SPP_STATUS_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&char_prop_read_notify}}, //SPP - status characteristic Value [SPP_IDX_SPP_STATUS_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&spp_status_uuid, ESP_GATT_PERM_READ, SPP_STATUS_MAX_LEN, sizeof(spp_status_val), (uint8_t *)spp_status_val}}, //SPP - status characteristic - Client Characteristic Configuration Descriptor [SPP_IDX_SPP_STATUS_CFG] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_client_config_uuid, ESP_GATT_PERM_READ|ESP_GATT_PERM_WRITE, sizeof(uint16_t), sizeof(spp_status_ccc), (uint8_t *)spp_status_ccc}}, #ifdef SUPPORT_HEARTBEAT //SPP - Heart beat characteristic Declaration [SPP_IDX_SPP_HEARTBEAT_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&char_prop_read_write_notify}}, //SPP - Heart beat characteristic Value [SPP_IDX_SPP_HEARTBEAT_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&spp_heart_beat_uuid, ESP_GATT_PERM_READ|ESP_GATT_PERM_WRITE, sizeof(spp_heart_beat_val), sizeof(spp_heart_beat_val), (uint8_t *)spp_heart_beat_val}}, //SPP - Heart beat characteristic - Client Characteristic Configuration Descriptor [SPP_IDX_SPP_HEARTBEAT_CFG] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_client_config_uuid, ESP_GATT_PERM_READ|ESP_GATT_PERM_WRITE, sizeof(uint16_t), sizeof(spp_data_notify_ccc), (uint8_t *)spp_heart_beat_ccc}}, #endif }; static uint8_t find_char_and_desr_index(uint16_t handle) { uint8_t error = 0xff; for(int i = 0; i < SPP_IDX_NB ; i++){ if(handle == spp_handle_table[i]){ return i; } } return error; } static bool store_wr_buffer(esp_ble_gatts_cb_param_t *p_data) { temp_spp_recv_data_node_p1 = (spp_receive_data_node_t *)malloc(sizeof(spp_receive_data_node_t)); if(temp_spp_recv_data_node_p1 == NULL){ ESP_LOGI(GATTS_TABLE_TAG, "malloc error %s %d", __func__, __LINE__); return false; } if(temp_spp_recv_data_node_p2 != NULL){ temp_spp_recv_data_node_p2->next_node = temp_spp_recv_data_node_p1; } temp_spp_recv_data_node_p1->len = p_data->write.len; SppRecvDataBuff.buff_size += p_data->write.len; temp_spp_recv_data_node_p1->next_node = NULL; temp_spp_recv_data_node_p1->node_buff = (uint8_t *)malloc(p_data->write.len); temp_spp_recv_data_node_p2 = temp_spp_recv_data_node_p1; if (temp_spp_recv_data_node_p1->node_buff == NULL) { ESP_LOGI(GATTS_TABLE_TAG, "malloc error %s %d\n", __func__, __LINE__); temp_spp_recv_data_node_p1->len = 0; } else { memcpy(temp_spp_recv_data_node_p1->node_buff,p_data->write.value,p_data->write.len); } if(SppRecvDataBuff.node_num == 0){ SppRecvDataBuff.first_node = temp_spp_recv_data_node_p1; SppRecvDataBuff.node_num++; }else{ SppRecvDataBuff.node_num++; } return true; } static void free_write_buffer(void) { temp_spp_recv_data_node_p1 = SppRecvDataBuff.first_node; while(temp_spp_recv_data_node_p1 != NULL){ temp_spp_recv_data_node_p2 = temp_spp_recv_data_node_p1->next_node; if (temp_spp_recv_data_node_p1->node_buff) { free(temp_spp_recv_data_node_p1->node_buff); } free(temp_spp_recv_data_node_p1); temp_spp_recv_data_node_p1 = temp_spp_recv_data_node_p2; } SppRecvDataBuff.node_num = 0; SppRecvDataBuff.buff_size = 0; SppRecvDataBuff.first_node = NULL; } static void print_write_buffer(void) { temp_spp_recv_data_node_p1 = SppRecvDataBuff.first_node; while (temp_spp_recv_data_node_p1 != NULL) { uart_write_bytes(UART_NUM_0, (char *)(temp_spp_recv_data_node_p1->node_buff), temp_spp_recv_data_node_p1->len); temp_spp_recv_data_node_p1 = temp_spp_recv_data_node_p1->next_node; } } void uart_task(void *pvParameters) { uart_event_t event; uint8_t total_num = 0; uint8_t current_num = 0; for (;;) { //Waiting for UART event. if (xQueueReceive(spp_uart_queue, (void * )&event, (TickType_t)portMAX_DELAY)) { switch (event.type) { //Event of UART receiving data case UART_DATA: if ((event.size)&&(is_connected)) { uint8_t * temp = NULL; uint8_t * ntf_value_p = NULL; if(!enable_data_ntf){ ESP_LOGE(GATTS_TABLE_TAG, "%s do not enable data Notify", __func__); break; } temp = (uint8_t *)malloc(sizeof(uint8_t)*event.size); if (temp == NULL) { ESP_LOGE(GATTS_TABLE_TAG, "%s malloc.1 failed", __func__); break; } uart_read_bytes(UART_NUM_0, temp, event.size, portMAX_DELAY); if (event.size <= (spp_mtu_size - 3)) { #ifdef CONFIG_EXAMPLE_ENABLE_RF_EMC_TEST_MODE ESP_LOG_BUFFER_HEX("TX", temp, event.size); #endif #ifdef CONFIG_EXAMPLE_SPP_THROUGHPUT if(esp_ble_get_cur_sendable_packets_num(spp_conn_id) > 0) { esp_ble_gatts_send_indicate(spp_gatts_if, spp_conn_id, spp_handle_table[SPP_IDX_SPP_DATA_NTY_VAL], event.size, temp, false); } else { //Add the vTaskDelay to prevent this task from consuming the CPU all the time, causing low-priority tasks to not be executed at all. vTaskDelay(10 / portTICK_PERIOD_MS); } #else esp_ble_gatts_send_indicate(spp_gatts_if, spp_conn_id, spp_handle_table[SPP_IDX_SPP_DATA_NTY_VAL], event.size, temp, true); #endif } else if (event.size > (spp_mtu_size - 3)) { if ((event.size % (spp_mtu_size - 7)) == 0) { total_num = event.size / (spp_mtu_size - 7); } else { total_num = event.size / (spp_mtu_size - 7) + 1; } current_num = 1; ntf_value_p = (uint8_t *)malloc((spp_mtu_size-3)*sizeof(uint8_t)); if (ntf_value_p == NULL) { ESP_LOGE(GATTS_TABLE_TAG, "%s malloc.2 failed", __func__); free(temp); break; } while (current_num <= total_num) { if (current_num < total_num) { ntf_value_p[0] = '#'; ntf_value_p[1] = '#'; ntf_value_p[2] = total_num; ntf_value_p[3] = current_num; memcpy(ntf_value_p + 4, temp + (current_num - 1)*(spp_mtu_size-7), (spp_mtu_size-7)); esp_ble_gatts_send_indicate(spp_gatts_if, spp_conn_id, spp_handle_table[SPP_IDX_SPP_DATA_NTY_VAL], (spp_mtu_size-3), ntf_value_p, false); } else if(current_num == total_num) { ntf_value_p[0] = '#'; ntf_value_p[1] = '#'; ntf_value_p[2] = total_num; ntf_value_p[3] = current_num; memcpy(ntf_value_p + 4, temp + (current_num - 1)*(spp_mtu_size-7), (event.size - (current_num - 1)*(spp_mtu_size - 7))); esp_ble_gatts_send_indicate(spp_gatts_if, spp_conn_id, spp_handle_table[SPP_IDX_SPP_DATA_NTY_VAL], (event.size - (current_num - 1)*(spp_mtu_size - 7) + 4), ntf_value_p, false); } vTaskDelay(20 / portTICK_PERIOD_MS); current_num++; } free(ntf_value_p); } free(temp); } break; default: break; } } } vTaskDelete(NULL); } static void spp_uart_init(void) { uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_RTS, .rx_flow_ctrl_thresh = 124, .source_clk = UART_SCLK_DEFAULT, }; //Install UART driver, and get the queue. uart_driver_install(UART_NUM_0, 4096, 8192, 10, &spp_uart_queue,0); //Set UART parameters uart_param_config(UART_NUM_0, &uart_config); //Set UART pins uart_set_pin(UART_NUM_0, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE); xTaskCreate(uart_task, "uTask", 4096, (void*)UART_NUM_0, 8, NULL); } // 心跳任务已删除 void spp_cmd_task(void * arg) { uint8_t * cmd_id; for (;;) { vTaskDelay(50 / portTICK_PERIOD_MS); if(xQueueReceive(cmd_cmd_queue, &cmd_id, portMAX_DELAY)) { ESP_LOG_BUFFER_CHAR(GATTS_TABLE_TAG, (char *)(cmd_id), strlen((char *)cmd_id)); free(cmd_id); } } vTaskDelete(NULL); } // SPI ENS1连接监控任务已注释,UART不需要监控任务 /* // ENS1连接监控任务 void ens1_monitor_task(void *pvParameters) { ESP_LOGI(GATTS_TABLE_TAG, "ENS1连接监控任务启动"); for (;;) { vTaskDelay(10000 / portTICK_PERIOD_MS); // 每10秒检查一次 if (spi_handle != NULL) { ESP_LOGI(GATTS_TABLE_TAG, "定期检查ENS1连接状态..."); esp_err_t ret = send_ens1_ping(); if (ret != ESP_OK) { ESP_LOGW(GATTS_TABLE_TAG, "ENS1连接异常,尝试重新检测: %s", esp_err_to_name(ret)); vTaskDelay(5000 / portTICK_PERIOD_MS); // 5秒后重试 ret = check_ens1_connection(); if (ret == ESP_OK) { ESP_LOGI(GATTS_TABLE_TAG, "✅ ENS1连接已恢复"); } else { ESP_LOGW(GATTS_TABLE_TAG, "⚠️ ENS1连接仍异常,状态: %s", ens1_connected ? "已连接" : "未连接"); } } } else { ESP_LOGW(GATTS_TABLE_TAG, "SPI设备未初始化,跳过连接检测"); } } vTaskDelete(NULL); } */ static void spp_task_init(void) { #ifdef CONFIG_EXAMPLE_ENABLE_RF_TESTING_CONFIGURATION_COMMAND rf_testing_configuration_command_enable(); #else spp_uart_init(); #endif // CONFIG_EXAMPLE_ENABLE_RF_TESTING_CONFIGURATION_COMMAND // 心跳队列和任务创建已删除 cmd_cmd_queue = xQueueCreate(10, sizeof(uint32_t)); xTaskCreate(spp_cmd_task, "spp_cmd_task", 4096, NULL, 10, NULL); // SPI ENS1连接监控任务已注释,UART不需要监控任务 /* // 创建ENS1连接监控任务 xTaskCreate(ens1_monitor_task, "ens1_monitor_task", 4096, NULL, 5, NULL); */ } static void gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param) { switch (event) { case ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT: esp_ble_gap_start_advertising(&spp_adv_params); break; case ESP_GAP_BLE_ADV_START_COMPLETE_EVT: //advertising start complete event to indicate advertising start successfully or failed if(param->adv_start_cmpl.status != ESP_BT_STATUS_SUCCESS) { ESP_LOGE(GATTS_TABLE_TAG, "Advertising start failed, status %d", param->adv_start_cmpl.status); break; } ESP_LOGI(GATTS_TABLE_TAG, "Advertising start successfully"); break; case ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT: if (param->adv_start_cmpl.status != ESP_BT_STATUS_SUCCESS) { ESP_LOGE(GATTS_TABLE_TAG, "Advertising stop failed, status %d", param->adv_stop_cmpl.status); break; } ESP_LOGI(GATTS_TABLE_TAG, "Advertising stop successfully"); break; case ESP_GAP_BLE_UPDATE_CONN_PARAMS_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Connection params update, status %d, conn_int %d, latency %d, timeout %d", param->update_conn_params.status, param->update_conn_params.conn_int, param->update_conn_params.latency, param->update_conn_params.timeout); break; default: break; } } static void gatts_profile_event_handler(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t *param) { esp_ble_gatts_cb_param_t *p_data = (esp_ble_gatts_cb_param_t *) param; uint8_t res = 0xff; switch (event) { case ESP_GATTS_REG_EVT: ESP_LOGI(GATTS_TABLE_TAG, "GATT server register, status %d, app_id %d, gatts_if %d", param->reg.status, param->reg.app_id, gatts_if); esp_ble_gap_set_device_name(SAMPLE_DEVICE_NAME); esp_ble_gap_config_adv_data_raw((uint8_t *)spp_adv_data, sizeof(spp_adv_data)); esp_ble_gatts_create_attr_tab(spp_gatt_db, gatts_if, SPP_IDX_NB, SPP_SVC_INST_ID); break; case ESP_GATTS_READ_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Characteristic read"); break; case ESP_GATTS_WRITE_EVT: { // ESP_LOGI(GATTS_TABLE_TAG, "Characteristic write, conn_id %d, handle %d", param->write.conn_id, param->write.handle); res = find_char_and_desr_index(p_data->write.handle); if (p_data->write.is_prep == false) { if (res == SPP_IDX_SPP_COMMAND_VAL) { uint8_t * spp_cmd_buff = NULL; spp_cmd_buff = (uint8_t *)malloc((spp_mtu_size - 3) * sizeof(uint8_t)); if(spp_cmd_buff == NULL){ ESP_LOGE(GATTS_TABLE_TAG, "%s malloc failed", __func__); break; } memset(spp_cmd_buff, 0x0, (spp_mtu_size - 3)); memcpy(spp_cmd_buff, p_data->write.value, p_data->write.len); xQueueSend(cmd_cmd_queue, &spp_cmd_buff, 10/portTICK_PERIOD_MS); } else if (res == SPP_IDX_SPP_DATA_NTF_CFG) { if ((p_data->write.len == 2) && (p_data->write.value[0] == 0x01) && (p_data->write.value[1] == 0x00)) { ESP_LOGI(GATTS_TABLE_TAG, "SPP data notification enable"); enable_data_ntf = true; } else if ((p_data->write.len == 2) && (p_data->write.value[0] == 0x02) && (p_data->write.value[1] == 0x00)) { ESP_LOGI(GATTS_TABLE_TAG, "SPP data indication enable"); enable_data_ntf = true; } else if ((p_data->write.len == 2) && (p_data->write.value[0] == 0x00) && (p_data->write.value[1] == 0x00)) { ESP_LOGI(GATTS_TABLE_TAG, "SPP data notification/indication disable"); enable_data_ntf = false; } } else if (res == SPP_IDX_SPP_STATUS_CFG) { if ((p_data->write.len == 2) && (p_data->write.value[0] == 0x01) && (p_data->write.value[1] == 0x00)) { ESP_LOGI(GATTS_TABLE_TAG, "SPP status notification enable"); } else if ((p_data->write.len == 2) && (p_data->write.value[0] == 0x00) && (p_data->write.value[1] == 0x00)) { ESP_LOGI(GATTS_TABLE_TAG, "SPP status notification disable"); } } // 心跳相关处理已删除 else if (res == SPP_IDX_SPP_DATA_RECV_VAL) { // 添加接收数据的日志输出 ESP_LOGI(GATTS_TABLE_TAG, "接收到BLE数据,长度: %d 字节", p_data->write.len); ESP_LOG_BUFFER_HEX("BLE接收数据", p_data->write.value, p_data->write.len); // 检查ENS1 UART连接状态并发送数据 if (ens1_uart_connected) { ESP_LOGI(GATTS_TABLE_TAG, "✅ ENS1 UART已连接,转发数据到ENS1芯片..."); esp_err_t uart_ret = uart_send_data_to_ens1((uint8_t*)p_data->write.value, p_data->write.len); if (uart_ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "UART数据发送失败,连接可能异常"); ens1_uart_connected = false; } } else { ESP_LOGW(GATTS_TABLE_TAG, "⚠️ ENS1 UART未连接,跳过数据发送"); } /* // SPI发送已注释 // 检查ENS1连接状态并发送数据 if (ens1_connected) { ESP_LOGI(GATTS_TABLE_TAG, "ENS1已连接,转发数据到芯片..."); esp_err_t spi_ret = spi_send_data((uint8_t*)p_data->write.value, p_data->write.len); if (spi_ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "SPI数据发送失败,连接可能异常"); ens1_connected = false; } } else { ESP_LOGW(GATTS_TABLE_TAG, "ENS1未连接,跳过SPI发送"); } */ #ifdef CONFIG_EXAMPLE_ENABLE_RF_EMC_TEST_MODE ESP_LOG_BUFFER_HEX("RX", p_data->write.value, p_data->write.len); #else uart_write_bytes(UART_NUM_0, (char *)(p_data->write.value), p_data->write.len); #endif } else { //TODO: } } else if ((p_data->write.is_prep == true) && (res == SPP_IDX_SPP_DATA_RECV_VAL)) { store_wr_buffer(p_data); } break; } case ESP_GATTS_EXEC_WRITE_EVT: { ESP_LOGI(GATTS_TABLE_TAG, "Execute write"); if (p_data->exec_write.exec_write_flag) { print_write_buffer(); free_write_buffer(); } break; } case ESP_GATTS_RESPONSE_EVT: break; case ESP_GATTS_MTU_EVT: ESP_LOGI(GATTS_TABLE_TAG, "MTU exchange, MTU %d", param->mtu.mtu); spp_mtu_size = p_data->mtu.mtu; break; case ESP_GATTS_CONF_EVT: if (param->conf.status) { ESP_LOGI(GATTS_TABLE_TAG, "Confirm received, status %d, handle %d", param->conf.status, param->conf.handle); } break; case ESP_GATTS_UNREG_EVT: break; case ESP_GATTS_DELETE_EVT: break; case ESP_GATTS_START_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Service start, status %d, service_handle %d", param->start.status, param->start.service_handle); break; case ESP_GATTS_STOP_EVT: break; case ESP_GATTS_CONNECT_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Connected, conn_id %u, remote "ESP_BD_ADDR_STR"", param->connect.conn_id, ESP_BD_ADDR_HEX(param->connect.remote_bda)); spp_conn_id = p_data->connect.conn_id; spp_gatts_if = gatts_if; is_connected = true; memcpy(&spp_remote_bda,&p_data->connect.remote_bda,sizeof(esp_bd_addr_t)); // 心跳启动已删除 break; case ESP_GATTS_DISCONNECT_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Disconnected, remote "ESP_BD_ADDR_STR", reason 0x%02x", ESP_BD_ADDR_HEX(param->disconnect.remote_bda), param->disconnect.reason); spp_mtu_size = 23; is_connected = false; enable_data_ntf = false; // 心跳状态重置已删除 esp_ble_gap_start_advertising(&spp_adv_params); break; case ESP_GATTS_OPEN_EVT: break; case ESP_GATTS_CANCEL_OPEN_EVT: break; case ESP_GATTS_CLOSE_EVT: break; case ESP_GATTS_LISTEN_EVT: break; case ESP_GATTS_CONGEST_EVT: break; case ESP_GATTS_CREAT_ATTR_TAB_EVT:{ ESP_LOGI(GATTS_TABLE_TAG, "The number handle %x",param->add_attr_tab.num_handle); if (param->add_attr_tab.status != ESP_GATT_OK) { ESP_LOGE(GATTS_TABLE_TAG, "Create attribute table failed, error code 0x%x", param->add_attr_tab.status); } else if (param->add_attr_tab.num_handle != SPP_IDX_NB) { ESP_LOGE(GATTS_TABLE_TAG, "Create attribute table abnormally, num_handle (%d) doesn't equal to HRS_IDX_NB(%d)", param->add_attr_tab.num_handle, SPP_IDX_NB); } else { memcpy(spp_handle_table, param->add_attr_tab.handles, sizeof(spp_handle_table)); esp_ble_gatts_start_service(spp_handle_table[SPP_IDX_SVC]); } break; } default: break; } } static void gatts_event_handler(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t *param) { /* If event is register event, store the gatts_if for each profile */ if (event == ESP_GATTS_REG_EVT) { if (param->reg.status == ESP_GATT_OK) { spp_profile_tab[SPP_PROFILE_APP_IDX].gatts_if = gatts_if; } else { ESP_LOGI(GATTS_TABLE_TAG, "Reg app failed, app_id %04x, status %d",param->reg.app_id, param->reg.status); return; } } do { int idx; for (idx = 0; idx < SPP_PROFILE_NUM; idx++) { if (gatts_if == ESP_GATT_IF_NONE || /* ESP_GATT_IF_NONE, not specify a certain gatt_if, need to call every profile cb function */ gatts_if == spp_profile_tab[idx].gatts_if) { if (spp_profile_tab[idx].gatts_cb) { spp_profile_tab[idx].gatts_cb(event, gatts_if, param); } } } } while (0); } void app_main(void) { esp_err_t ret; esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT(); ret = init_uart_ens1(); if (ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "UART初始化失败,继续运行但不支持ENS1通信功能"); ens1_uart_connected = false; } else { ESP_LOGI(GATTS_TABLE_TAG, "UART初始化完成,跳过连接检测"); // 直接设置连接状态为true,不发送检测命令 ens1_uart_connected = true; // 启动UART接收任务 xTaskCreate(uart_ens1_rx_task, "uart_ens1_rx_task", 4096, NULL, 10, NULL); } /* // SPI初始化已注释 // 初始化SPI (连接ENS1芯片) ESP_LOGI(GATTS_TABLE_TAG, "初始化SPI外设..."); ret = init_spi(); if (ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "SPI总线初始化失败,继续运行但不支持SPI功能"); } else { ret = init_spi_device(); if (ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "SPI设备初始化失败,继续运行但不支持SPI功能"); ens1_connected = false; } else { ESP_LOGI(GATTS_TABLE_TAG, "SPI初始化完成,检测ENS1芯片连接..."); // 初始连接检测 ret = check_ens1_connection(); if (ret == ESP_OK) { ESP_LOGI(GATTS_TABLE_TAG, "✅ ENS1芯片连接检测成功!"); ens1_connected = true; } else { ESP_LOGW(GATTS_TABLE_TAG, "⚠️ ENS1芯片连接检测失败,可能是断线或芯片未响应"); ens1_connected = false; } } } */ spp_task_init(); // Initialize NVS ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_ERROR_CHECK(nvs_flash_erase()); ret = nvs_flash_init(); } ESP_ERROR_CHECK( ret ); ESP_ERROR_CHECK(esp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT)); ret = esp_bt_controller_init(&bt_cfg); if (ret) { ESP_LOGE(GATTS_TABLE_TAG, "%s enable controller failed: %s", __func__, esp_err_to_name(ret)); return; } ret = esp_bt_controller_enable(ESP_BT_MODE_BLE); if (ret) { ESP_LOGE(GATTS_TABLE_TAG, "%s enable controller failed: %s", __func__, esp_err_to_name(ret)); return; } ESP_LOGI(GATTS_TABLE_TAG, "%s init bluetooth", __func__); ret = esp_bluedroid_init(); if (ret) { ESP_LOGE(GATTS_TABLE_TAG, "%s init bluetooth failed: %s", __func__, esp_err_to_name(ret)); return; } ret = esp_bluedroid_enable(); if (ret) { ESP_LOGE(GATTS_TABLE_TAG, "%s enable bluetooth failed: %s", __func__, esp_err_to_name(ret)); return; } esp_ble_gatts_register_callback(gatts_event_handler); esp_ble_gap_register_callback(gap_event_handler); esp_ble_gatts_app_register(ESP_SPP_APP_ID); esp_err_t local_mtu_ret = esp_ble_gatt_set_local_mtu(SPP_GATT_MTU_SIZE); if (local_mtu_ret){ ESP_LOGE(GATTS_TABLE_TAG, "set local MTU failed, error code = %x", local_mtu_ret); } return; } // ========================= UART通信功能已移至 uart_ens1.c ========================= // ========================= SPI功能已注释 ========================= /* // SPI初始化函数 (连接到ENS1芯片) esp_err_t init_spi(void) { spi_bus_config_t bus_config = { .miso_io_num = GPIO_NUM_NC, // 不使用MISO,只输出到ENS1 .mosi_io_num = PIN_MOSI, // MOSI引脚 (GPIO13) .sclk_io_num = PIN_SCK, // SCK引脚 (GPIO14) .quadhd_io_num = GPIO_NUM_NC, // 不需要 .quadwp_io_num = GPIO_NUM_NC, // 不需要 .max_transfer_sz = 4096, // 最大传输大小 }; ESP_LOGI(GATTS_TABLE_TAG, "初始化SPI总线 (SPI2_HOST)..."); esp_err_t ret; // ESP-IDF v5.5 仍使用 spi_bus_initialize ret = spi_bus_initialize(SPI_HOST, &bus_config, SPI_DMA_CH_AUTO); if (ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "SPI总线初始化失败: %s", esp_err_to_name(ret)); return ret; } ESP_LOGI(GATTS_TABLE_TAG, "SPI总线初始化成功"); return ESP_OK; } // SPI设备初始化 (ENS1芯片) esp_err_t init_spi_device(void) { spi_device_interface_config_t dev_config = { .clock_speed_hz = 1500000, // 1.5 MHz SPI时钟 (适配STM32 FPCLK/32) .mode = 0, // SPI模式0 (CPOL=0, CPHA=0) - 匹配ENS1 .spics_io_num = PIN_CS, // SPI片选引脚 (GPIO15) - 对应NSS1 .queue_size = 1, // 队列大小 .flags = SPI_DEVICE_HALFDUPLEX, // 半双工模式,匹配L2_UniDirect_TandR .input_delay_ns = 0, .command_bits = 0, // 无命令位,匹配8位CHAR_LEN .address_bits = 0, // 无地址位 }; ESP_LOGI(GATTS_TABLE_TAG, "添加SPI设备到总线..."); esp_err_t ret = spi_bus_add_device(SPI_HOST, &dev_config, &spi_handle); if (ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "添加SPI设备失败: %s", esp_err_to_name(ret)); return ret; } // 确保设备句柄有效 if (spi_handle == NULL) { ESP_LOGE(GATTS_TABLE_TAG, "SPI设备句柄无效"); return ESP_FAIL; } ESP_LOGI(GATTS_TABLE_TAG, "SPI设备初始化成功 (ENS1芯片)"); ESP_LOGI(GATTS_TABLE_TAG, "MOSI: GPIO%d, SCK: GPIO%d, CS: GPIO%d", PIN_MOSI, PIN_SCK, PIN_CS); return ESP_OK; } // SPI发送数据到ENS1芯片 esp_err_t spi_send_data(uint8_t *data, size_t len) { if (spi_handle == NULL) { ESP_LOGE(GATTS_TABLE_TAG, "SPI设备未初始化"); return ESP_ERR_INVALID_STATE; } if (data == NULL || len == 0) { ESP_LOGE(GATTS_TABLE_TAG, "无效的数据或长度"); return ESP_ERR_INVALID_ARG; } spi_transaction_t trans = { .length = len * 8, // 数据长度(位数) .tx_buffer = NULL, // 默认不使用缓冲区 .tx_data = {0}, .flags = 0, // 不设置SPI_TRANS_USE_TXDATA标志 }; // 根据数据长度选择传输方式 if (len <= 4) { // 4字节以内的数据使用tx_data字段(更高效) memset(trans.tx_data, 0, sizeof(trans.tx_data)); memcpy(trans.tx_data, data, len); trans.length = len * 8; trans.flags = SPI_TRANS_USE_TXDATA; // 使用发送数据标志 } else { // 超过4字节的数据使用tx_buffer trans.tx_buffer = data; trans.length = len * 8; trans.flags = 0; // 使用缓冲区模式 } ESP_LOGI(GATTS_TABLE_TAG, "发送SPI数据到ENS1,长度: %d 字节", len); ESP_LOG_BUFFER_HEX("ENS1发送数据", data, len); esp_err_t ret = spi_device_transmit(spi_handle, &trans); if (ret != ESP_OK) { ESP_LOGE(GATTS_TABLE_TAG, "SPI数据发送失败: %s", esp_err_to_name(ret)); return ret; } ESP_LOGI(GATTS_TABLE_TAG, "SPI数据发送成功"); return ESP_OK; } // 检查ENS1芯片连接状态 (Ping检测) esp_err_t check_ens1_connection(void) { if (spi_handle == NULL) { ESP_LOGW(GATTS_TABLE_TAG, "SPI设备未初始化,无法检测ENS1连接"); ens1_connected = false; return ESP_ERR_INVALID_STATE; } // 发送Ping命令检测连接 uint8_t ping_cmd[] = {0xAA, 0x55, 0x01, 0x02}; // ENS1连接检测命令 esp_err_t ret = spi_device_transmit(spi_handle, &(spi_transaction_t){ .length = sizeof(ping_cmd) * 8, // 4字节 = 32位 .tx_data = {ping_cmd[0], ping_cmd[1], ping_cmd[2], ping_cmd[3]}, // 4字节数据 .flags = SPI_TRANS_USE_TXDATA, // 使用tx_data字段(≤32位) }); if (ret == ESP_OK) { ESP_LOGI(GATTS_TABLE_TAG, "ENS1连接检测成功 - PING响应正常"); ens1_connected = true; return ESP_OK; } else { ESP_LOGW(GATTS_TABLE_TAG, "ENS1连接检测失败: %s", esp_err_to_name(ret)); ens1_connected = false; return ret; } } // 发送ENS1芯片Ping命令 (持续检测连接) esp_err_t send_ens1_ping(void) { if (spi_handle == NULL) { ESP_LOGW(GATTS_TABLE_TAG, "SPI设备未初始化,无法发送Ping"); ens1_connected = false; return ESP_ERR_INVALID_STATE; } // ENS1心跳包格式: 命令头 + 序列号 + 校验和 (限制在4字节以内) static uint8_t ping_sequence = 0; ping_sequence++; uint8_t ping_data[] = { 0xAA, // 起始同步头 0x55, // 起始同步头 0xFE, // Ping命令ID ping_sequence // 序列号(递增) }; ESP_LOGI(GATTS_TABLE_TAG, "发送ENS1 Ping命令,序列号: %d", ping_sequence); ESP_LOG_BUFFER_HEX("Ping数据", ping_data, sizeof(ping_data)); spi_transaction_t trans = { .length = sizeof(ping_data) * 8, // 4字节 = 32位 .tx_data = {ping_data[0], ping_data[1], ping_data[2], ping_data[3]}, // 只使用前4字节 .flags = SPI_TRANS_USE_TXDATA, // 使用tx_data字段(≤32位) }; esp_err_t ret = spi_device_transmit(spi_handle, &trans); if (ret == ESP_OK) { ESP_LOGI(GATTS_TABLE_TAG, "ENS1 Ping发送成功"); ens1_connected = true; return ESP_OK; } else { ESP_LOGE(GATTS_TABLE_TAG, "ENS1 Ping发送失败: %s", esp_err_to_name(ret)); ens1_connected = false; return ret; } } */ // ========================= SPI功能注释结束 =========================