442 lines
15 KiB
C++
442 lines
15 KiB
C++
|
|
#include "signal_processor.h"
|
|||
|
|
SensorData SignalProcessor::preprocess_generic(const SensorData& data) {
|
|||
|
|
SensorData processed = data;
|
|||
|
|
|
|||
|
|
// 通用预处理:带通滤波
|
|||
|
|
if (auto* channels = std::get_if<std::vector<std::vector<float>>>(&processed.channel_data)) {
|
|||
|
|
for (auto& channel : *channels) {
|
|||
|
|
channel = bandpass_filter(channel, 100.0, 0.5, 45.0);
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
SensorData SignalProcessor::preprocess_signals(const SensorData& raw_data ) {
|
|||
|
|
// 1. 创建处理后的数据结构
|
|||
|
|
SensorData processed = raw_data;
|
|||
|
|
|
|||
|
|
// 2. 设备特定预处理
|
|||
|
|
switch (processed.data_type) {
|
|||
|
|
case DataType::EEG:
|
|||
|
|
processed = preprocess_eeg(raw_data);
|
|||
|
|
break;
|
|||
|
|
case DataType::ECG_2LEAD:
|
|||
|
|
processed = preprocess_ecg_2lead(raw_data);
|
|||
|
|
break;
|
|||
|
|
case DataType::ECG_12LEAD:
|
|||
|
|
processed = preprocess_ecg_12lead(raw_data);
|
|||
|
|
break;
|
|||
|
|
case DataType::PPG:
|
|||
|
|
processed = preprocess_ppg(raw_data);
|
|||
|
|
break;
|
|||
|
|
case DataType::RESPIRATION:
|
|||
|
|
processed = preprocess_respiration(raw_data);
|
|||
|
|
break;
|
|||
|
|
case DataType::SNORE:
|
|||
|
|
processed = preprocess_snore(raw_data);
|
|||
|
|
break;
|
|||
|
|
case DataType::STETHOSCOPE:
|
|||
|
|
processed = preprocess_stethoscope(raw_data);
|
|||
|
|
break;
|
|||
|
|
default:
|
|||
|
|
processed = preprocess_generic(raw_data);
|
|||
|
|
break;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// 3. 通用后处
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
SensorData SignalProcessor::preprocess_eeg(const SensorData& data) {
|
|||
|
|
SensorData processed = data;
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
SensorData SignalProcessor::preprocess_ecg_2lead(const SensorData& data)
|
|||
|
|
{
|
|||
|
|
SensorData processed = data;
|
|||
|
|
return processed;
|
|||
|
|
|
|||
|
|
}
|
|||
|
|
// 12导联心电预处理函数
|
|||
|
|
SensorData SignalProcessor::preprocess_ecg_12lead(const SensorData& data) {
|
|||
|
|
const double SAMPLE_RATE = 250.0; // 12导联心电标准采样率500Hz
|
|||
|
|
|
|||
|
|
// 创建处理后的数据结构
|
|||
|
|
SensorData processed = data;
|
|||
|
|
|
|||
|
|
// 获取通道数据
|
|||
|
|
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
|
|||
|
|
if (channels.size() != 12) {
|
|||
|
|
throw std::runtime_error("Invalid channel count for 12-lead ECG");
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// 对每个导联独立进行信号处理
|
|||
|
|
for (auto& channel : channels) {
|
|||
|
|
// 1. 0.5Hz高通滤波 (去除基线漂移)
|
|||
|
|
channel = filter(channel, SAMPLE_RATE, 0.5, 0.0, filtertype::highpass);
|
|||
|
|
|
|||
|
|
// 2. 50Hz自适应陷波滤波 (去除工频干扰)
|
|||
|
|
channel = filter(channel, SAMPLE_RATE, 50.0, 60,filtertype::notchpass);
|
|||
|
|
|
|||
|
|
// 3. 25-40Hz带阻滤波 (去除肌电干扰)
|
|||
|
|
channel = filter(channel, SAMPLE_RATE, 25.0, 40.0, filtertype::bandstop);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// 计算并存储信号质量指数
|
|||
|
|
float avg_sqi = 0.0f;
|
|||
|
|
for (const auto& channel : channels) {
|
|||
|
|
avg_sqi += calculate_ecg_sqi(channel, SAMPLE_RATE);
|
|||
|
|
}
|
|||
|
|
processed.sqi = avg_sqi / channels.size();
|
|||
|
|
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
SensorData SignalProcessor::preprocess_ppg(const SensorData& data) {
|
|||
|
|
// 1. 创建处理后的数据结构
|
|||
|
|
SensorData processed = data;
|
|||
|
|
|
|||
|
|
// 2. 获取通道数据(红光和红外光)
|
|||
|
|
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
|
|||
|
|
if (channels.size() < 2) {
|
|||
|
|
throw std::runtime_error("PPG数据需要至少两个通道(红光和红外光)");
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
channels[0] = remove_dc_offset(channels[0]);
|
|||
|
|
|
|||
|
|
|
|||
|
|
// c. 带通滤波 (0.5-10Hz)
|
|||
|
|
channels[0] = bandpass_filter(channels[0], 50.0, 0.5, 10.0);
|
|||
|
|
|
|||
|
|
|
|||
|
|
// 4. 预处理红外光通道(通道1)
|
|||
|
|
|
|||
|
|
// b. 移除直流分量(DC)
|
|||
|
|
channels[1] = remove_dc_offset(channels[1]);
|
|||
|
|
|
|||
|
|
// c. 带通滤波 (0.5-10Hz)
|
|||
|
|
channels[1] = bandpass_filter(channels[1], 50.0, 0.5, 10.0);
|
|||
|
|
|
|||
|
|
|
|||
|
|
// 5. 计算信号质量指数(SQI)
|
|||
|
|
processed.sqi = calculate_PPG_sqi(channels[0], channels[1]);
|
|||
|
|
|
|||
|
|
// 6. 更新附加数据(心率和血氧)
|
|||
|
|
// 文档中已经提供了hr和spo2值,但我们可以根据信号质量进行修正
|
|||
|
|
if (processed.sqi > 0.8) {
|
|||
|
|
// 高质量信号,使用设备提供的值
|
|||
|
|
} else {
|
|||
|
|
// 低质量信号,可能需要重新计算或标记为不可靠
|
|||
|
|
processed.additional.hr = 0; // 设置为0表示不可靠
|
|||
|
|
processed.additional.spo2 = 0;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
SensorData SignalProcessor::preprocess_respiration(const SensorData& data)
|
|||
|
|
{
|
|||
|
|
SensorData processed = data;
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
SensorData SignalProcessor::preprocess_snore(const SensorData& data)
|
|||
|
|
{
|
|||
|
|
SensorData processed = data;
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
SensorData SignalProcessor::preprocess_stethoscope(const SensorData& data)
|
|||
|
|
{
|
|||
|
|
SensorData processed = data;
|
|||
|
|
return processed;
|
|||
|
|
}
|
|||
|
|
// 添加预处理辅助函数
|
|||
|
|
std::vector<float> SignalProcessor::remove_dc_offset(const std::vector<float>& signal) {
|
|||
|
|
if (signal.empty()) return {}; // 处理空输入
|
|||
|
|
std::vector<float> result = signal;
|
|||
|
|
float dc_remove = 0;
|
|||
|
|
for(auto& val:signal) dc_remove += val;
|
|||
|
|
dc_remove /= result.size();
|
|||
|
|
for(auto& value:result) value -= dc_remove;
|
|||
|
|
return result;
|
|||
|
|
}
|
|||
|
|
std::vector<float> SignalProcessor::apply_gain(const std::vector<float>& signal, float gain) {
|
|||
|
|
std::vector<float> result = signal;
|
|||
|
|
return result;
|
|||
|
|
}
|
|||
|
|
// 实现眼电伪迹补偿
|
|||
|
|
std::vector<float> SignalProcessor::compensate_eog_artifact(const std::vector<float>& eeg,
|
|||
|
|
const std::vector<float>& eog1,
|
|||
|
|
const std::vector<float>& eog2) {
|
|||
|
|
std::vector<float> result = eeg;
|
|||
|
|
return result;
|
|||
|
|
}
|
|||
|
|
// 实现自适应陷波滤波器(成员函数)
|
|||
|
|
std::vector<float> SignalProcessor::adaptive_notch_filter(const std::vector<float>& input,
|
|||
|
|
double sample_rate,
|
|||
|
|
double target_freq,
|
|||
|
|
double bandwidth) {
|
|||
|
|
std::vector<float> output(input.size(), 0.0f);
|
|||
|
|
|
|||
|
|
// 计算滤波器系数
|
|||
|
|
double omega0 = 2 * M_PI * target_freq / sample_rate;
|
|||
|
|
double alpha = sin(omega0) * sinh(log(2) / 2 * bandwidth * omega0 / sin(omega0));
|
|||
|
|
|
|||
|
|
double b0 = 1;
|
|||
|
|
double b1 = -2 * cos(omega0);
|
|||
|
|
double b2 = 1;
|
|||
|
|
double a0 = 1 + alpha;
|
|||
|
|
double a1 = -2 * cos(omega0);
|
|||
|
|
double a2 = 1 - alpha;
|
|||
|
|
|
|||
|
|
// 归一化系数
|
|||
|
|
b0 /= a0;
|
|||
|
|
b1 /= a0;
|
|||
|
|
b2 /= a0;
|
|||
|
|
a1 /= a0;
|
|||
|
|
a2 /= a0;
|
|||
|
|
|
|||
|
|
// 初始化滤波器状态
|
|||
|
|
double x1 = 0, x2 = 0;
|
|||
|
|
double y1 = 0, y2 = 0;
|
|||
|
|
|
|||
|
|
// 应用滤波器
|
|||
|
|
for (size_t n = 0; n < input.size(); ++n) {
|
|||
|
|
double x0 = input[n];
|
|||
|
|
output[n] = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
|
|||
|
|
|
|||
|
|
// 更新状态
|
|||
|
|
x2 = x1;
|
|||
|
|
x1 = x0;
|
|||
|
|
y2 = y1;
|
|||
|
|
y1 = output[n];
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
return output;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
std::vector<float> SignalProcessor::filter(const std::vector<float>& input,
|
|||
|
|
double sample_rate,
|
|||
|
|
double low_cutoff,
|
|||
|
|
double high_cutoff,
|
|||
|
|
filtertype type){
|
|||
|
|
|
|||
|
|
switch(type)
|
|||
|
|
{
|
|||
|
|
case filtertype::lowpass:
|
|||
|
|
return Lowpass_filter(input,sample_rate,low_cutoff);
|
|||
|
|
case filtertype::highpass:
|
|||
|
|
return Highpass_filter(input,sample_rate,high_cutoff);
|
|||
|
|
case filtertype::notchpass:
|
|||
|
|
return adaptive_notch_filter(input,sample_rate,0.5*(high_cutoff+low_cutoff),high_cutoff-low_cutoff);
|
|||
|
|
case filtertype::bandpass:
|
|||
|
|
return bandpass_filter(input,sample_rate,low_cutoff,high_cutoff);
|
|||
|
|
case filtertype::bandstop:
|
|||
|
|
return bandstop_filter(input,sample_rate,low_cutoff,high_cutoff);
|
|||
|
|
default:
|
|||
|
|
return input;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
std::vector<float> SignalProcessor::Lowpass_filter(const std::vector<float>& input,
|
|||
|
|
double sample_rate,
|
|||
|
|
double low_cutoff){
|
|||
|
|
if (input.empty()) return input;
|
|||
|
|
std::vector<float> output(input.size());
|
|||
|
|
double A,f;
|
|||
|
|
f = 1/sample_rate;
|
|||
|
|
A = 1.0f/(1+(1/(2*M_PI*f*low_cutoff)));
|
|||
|
|
output[0] = input[0];
|
|||
|
|
if (input.size() > 1) output[1] = input[1];
|
|||
|
|
for (size_t n = 2; n < input.size(); n++)
|
|||
|
|
{
|
|||
|
|
output[n] = A*input[n] + (1-A)*output[n-1];
|
|||
|
|
}
|
|||
|
|
return output;
|
|||
|
|
}
|
|||
|
|
std::vector<float> SignalProcessor::Highpass_filter(const std::vector<float>& input,
|
|||
|
|
double sample_rate,
|
|||
|
|
double high_cutoff){
|
|||
|
|
if (input.empty()) return input;
|
|||
|
|
std::vector<float> output(input.size());
|
|||
|
|
double A,f;
|
|||
|
|
f = 1/sample_rate;
|
|||
|
|
A = 1.0f/(1+(1/(2*M_PI*f*high_cutoff)));
|
|||
|
|
output[0] = input[0];
|
|||
|
|
if (input.size() > 1) output[1] = input[1];
|
|||
|
|
for (size_t n = 2; n < input.size(); n++)
|
|||
|
|
{
|
|||
|
|
output[n] = A*output[n-1] + A*(input[n]-input[n-1]);
|
|||
|
|
}
|
|||
|
|
return output;
|
|||
|
|
}
|
|||
|
|
// 带通滤波器
|
|||
|
|
std::vector<float> SignalProcessor::bandpass_filter(const std::vector<float>& input,
|
|||
|
|
double sample_rate,
|
|||
|
|
double low_cutoff,
|
|||
|
|
double high_cutoff) {
|
|||
|
|
std::vector<float> output(input.size(), 0.0f);
|
|||
|
|
|
|||
|
|
// 计算滤波器系数
|
|||
|
|
double omega0 = 2 * M_PI * (low_cutoff + high_cutoff) / (2 * sample_rate);
|
|||
|
|
double BW = (high_cutoff - low_cutoff) / sample_rate;
|
|||
|
|
double Q = (low_cutoff + high_cutoff) / (2 * (high_cutoff - low_cutoff));
|
|||
|
|
|
|||
|
|
double alpha = sin(omega0) / (2 * Q);
|
|||
|
|
double b0 = alpha;
|
|||
|
|
double b1 = 0;
|
|||
|
|
double b2 = -alpha;
|
|||
|
|
double a0 = 1 + alpha;
|
|||
|
|
double a1 = -2 * cos(omega0);
|
|||
|
|
double a2 = 1 - alpha;
|
|||
|
|
|
|||
|
|
// 归一化系数
|
|||
|
|
b0 /= a0;
|
|||
|
|
b1 /= a0;
|
|||
|
|
b2 /= a0;
|
|||
|
|
a1 /= a0;
|
|||
|
|
a2 /= a0;
|
|||
|
|
|
|||
|
|
// 初始化滤波器状态
|
|||
|
|
double x1 = 0, x2 = 0;
|
|||
|
|
double y1 = 0, y2 = 0;
|
|||
|
|
|
|||
|
|
// 应用滤波器
|
|||
|
|
for (size_t n = 0; n < input.size(); ++n) {
|
|||
|
|
double x0 = input[n];
|
|||
|
|
output[n] = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
|
|||
|
|
|
|||
|
|
// 更新状态
|
|||
|
|
x2 = x1;
|
|||
|
|
x1 = x0;
|
|||
|
|
y2 = y1;
|
|||
|
|
y1 = output[n];
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
return output;
|
|||
|
|
}
|
|||
|
|
//带阻滤波器
|
|||
|
|
std::vector<float> SignalProcessor::bandstop_filter(const std::vector<float>& input,
|
|||
|
|
double sample_rate,
|
|||
|
|
double low_cutoff,
|
|||
|
|
double high_cutoff) {
|
|||
|
|
if (input.empty()) return {};
|
|||
|
|
if (low_cutoff >= high_cutoff) {
|
|||
|
|
throw std::invalid_argument("Low cutoff must be less than high cutoff");
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
std::vector<float> output(input.size(), 0.0f);
|
|||
|
|
const double f0 = (low_cutoff + high_cutoff) / 2.0; // 中心频率
|
|||
|
|
const double BW = high_cutoff - low_cutoff; // 带宽
|
|||
|
|
const double Q = f0 / BW; // 品质因数
|
|||
|
|
const double omega0 = 2 * M_PI * f0 / sample_rate;
|
|||
|
|
const double alpha = sin(omega0) / (2 * Q);
|
|||
|
|
|
|||
|
|
// 计算滤波器系数
|
|||
|
|
const double b0 = 1.0;
|
|||
|
|
const double b1 = -2 * cos(omega0);
|
|||
|
|
const double b2 = 1.0;
|
|||
|
|
const double a0 = 1.0 + alpha;
|
|||
|
|
const double a1 = -2 * cos(omega0);
|
|||
|
|
const double a2 = 1.0 - alpha;
|
|||
|
|
|
|||
|
|
// 归一化系数
|
|||
|
|
const double inv_a0 = 1.0 / a0;
|
|||
|
|
const double nb0 = b0 * inv_a0;
|
|||
|
|
const double nb1 = b1 * inv_a0;
|
|||
|
|
const double nb2 = b2 * inv_a0;
|
|||
|
|
const double na1 = a1 * inv_a0;
|
|||
|
|
const double na2 = a2 * inv_a0;
|
|||
|
|
|
|||
|
|
// 滤波器状态
|
|||
|
|
double x1 = 0.0, x2 = 0.0;
|
|||
|
|
double y1 = 0.0, y2 = 0.0;
|
|||
|
|
|
|||
|
|
// 应用滤波器
|
|||
|
|
for (size_t n = 0; n < input.size(); ++n) {
|
|||
|
|
const double x0 = input[n];
|
|||
|
|
const double y = nb0 * x0 + nb1 * x1 + nb2 * x2 - na1 * y1 - na2 * y2;
|
|||
|
|
|
|||
|
|
output[n] = static_cast<float>(y);
|
|||
|
|
|
|||
|
|
// 更新状态
|
|||
|
|
x2 = x1;
|
|||
|
|
x1 = x0;
|
|||
|
|
y2 = y1;
|
|||
|
|
y1 = y;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
return output;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// 运动补偿
|
|||
|
|
std::vector<float> SignalProcessor::compensate_motion_artifact(const std::vector<float>& ppg,
|
|||
|
|
const std::vector<float>& motion) {
|
|||
|
|
std::vector<float> output = ppg;
|
|||
|
|
return ppg;
|
|||
|
|
}
|
|||
|
|
// 辅助函数:计算PPG信号质量指数
|
|||
|
|
float SignalProcessor::calculate_PPG_sqi(const std::vector<float>& red_channel,
|
|||
|
|
const std::vector<float>& ir_channel) {
|
|||
|
|
return 0.0f;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// 辅助函数:计算信号的信噪比(SNR)
|
|||
|
|
float SignalProcessor::calculate_snr(const std::vector<float>& signal) {
|
|||
|
|
return 0.0f;
|
|||
|
|
}
|
|||
|
|
// 辅助函数:计算两个信号的相关系数
|
|||
|
|
float SignalProcessor::calculate_correlation(const std::vector<float>& x,
|
|||
|
|
const std::vector<float>& y) {
|
|||
|
|
return 0.0f;
|
|||
|
|
}
|
|||
|
|
// 在 signal_processor.cpp 文件中添加以下代码
|
|||
|
|
float SignalProcessor::calculate_ecg_sqi(const std::vector<float>& signal, double sample_rate) {
|
|||
|
|
// 1. 检查输入有效性
|
|||
|
|
if (signal.empty()) return 0.0f;
|
|||
|
|
if (sample_rate <= 0) return 0.0f;
|
|||
|
|
const size_t min_samples = static_cast<size_t>(0.5 * sample_rate); // 至少0.5秒数据
|
|||
|
|
if (signal.size() < min_samples) return 0.0f;
|
|||
|
|
|
|||
|
|
// 3. 幅度检测(检测导联脱落或信号丢失)
|
|||
|
|
float max_val = *std::max_element(signal.begin(), signal.end());
|
|||
|
|
float min_val = *std::min_element(signal.begin(), signal.end());
|
|||
|
|
float pp_amp = max_val - min_val; // 峰峰值幅度
|
|||
|
|
if (pp_amp < 0.1f) return 0.0f; // 幅度过低(假设单位是mV)
|
|||
|
|
|
|||
|
|
// 4. 噪声水平评估
|
|||
|
|
float noise_level = 0.0f;
|
|||
|
|
for (size_t i = 1; i < signal.size(); ++i) {
|
|||
|
|
float diff = signal[i] - signal[i-1];
|
|||
|
|
noise_level += diff * diff;
|
|||
|
|
}
|
|||
|
|
noise_level = std::sqrt(noise_level / signal.size());
|
|||
|
|
|
|||
|
|
// 5. 功率谱分析(QRS频带能量比)
|
|||
|
|
float total_power = 0.0f;
|
|||
|
|
float qrs_power = 0.0f;
|
|||
|
|
for (float s : signal) {
|
|||
|
|
total_power += s * s;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// 5-20Hz带通滤波(QRS主要能量带)
|
|||
|
|
std::vector<float> qrs_band = bandpass_filter(signal, sample_rate, 5.0, 20.0);
|
|||
|
|
for (float s : qrs_band) {
|
|||
|
|
qrs_power += s * s;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
float qrs_ratio = (total_power > 0) ? qrs_power / total_power : 0.0f;
|
|||
|
|
|
|||
|
|
// 6. 基于特征的SQI计算
|
|||
|
|
float sqi = 0.0f;
|
|||
|
|
|
|||
|
|
// 幅度因子(0.5-5mV为理想范围)
|
|||
|
|
float amp_factor = std::clamp((pp_amp - 0.5f) / 4.5f, 0.0f, 1.0f);
|
|||
|
|
|
|||
|
|
// 噪声因子(经验阈值)
|
|||
|
|
float noise_factor = std::exp(-noise_level * 50.0f);
|
|||
|
|
|
|||
|
|
// QRS能量因子
|
|||
|
|
float qrs_factor = std::clamp((qrs_ratio - 0.3f) * 2.5f, 0.0f, 1.0f);
|
|||
|
|
|
|||
|
|
// 综合评分(加权平均)
|
|||
|
|
sqi = 0.4f * amp_factor + 0.4f * qrs_factor + 0.2f * noise_factor;
|
|||
|
|
|
|||
|
|
// 确保在[0,1]范围内
|
|||
|
|
return std::clamp(sqi, 0.0f, 1.0f);
|
|||
|
|
}
|