medical_SDK/src/signal_processor/signal_processor.cpp

625 lines
21 KiB
C++
Raw Normal View History

2025-07-28 11:56:50 +08:00
#include "signal_processor.h"
SensorData SignalProcessor::preprocess_generic(const SensorData& data) {
SensorData processed = data;
// 通用预处理:带通滤波
if (auto* channels = std::get_if<std::vector<std::vector<float>>>(&processed.channel_data)) {
for (auto& channel : *channels) {
channel = bandpass_filter(channel, 100.0, 0.5, 45.0);
}
}
return processed;
}
SensorData SignalProcessor::preprocess_signals(const SensorData& raw_data ) {
// 1. 创建处理后的数据结构
SensorData processed = raw_data;
// 2. 设备特定预处理
switch (processed.data_type) {
case DataType::EEG:
processed = preprocess_eeg(raw_data);
break;
case DataType::ECG_2LEAD:
processed = preprocess_ecg_2lead(raw_data);
break;
case DataType::ECG_12LEAD:
processed = preprocess_ecg_12lead(raw_data);
break;
case DataType::PPG:
processed = preprocess_ppg(raw_data);
break;
case DataType::RESPIRATION:
processed = preprocess_respiration(raw_data);
break;
case DataType::SNORE:
processed = preprocess_snore(raw_data);
break;
case DataType::STETHOSCOPE:
processed = preprocess_stethoscope(raw_data);
break;
default:
processed = preprocess_generic(raw_data);
break;
}
// 3. 通用后处
return processed;
}
SensorData SignalProcessor::preprocess_eeg(const SensorData& data) {
2025-07-29 15:21:28 +08:00
const double SAMPLE_RATE = 250.0; // 脑电标准采样率250Hz
2025-07-28 11:56:50 +08:00
SensorData processed = data;
2025-07-29 15:21:28 +08:00
// 获取通道数据
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
if (channels.size() < 8) {
throw std::runtime_error("Invalid channel count for EEG");
}
// 分离EEG和EOG通道
std::vector<std::vector<float>> eeg_channels(channels.begin(), channels.begin() + 6);
std::vector<std::vector<float>> eog_channels(channels.begin() + 6, channels.end());
// 处理EEG通道
for (auto& channel : eeg_channels) {
// 1. 眼电伪迹补偿使用EOG通道
if (eog_channels.size() >= 2) {
channel = compensate_eog_artifact(channel, eog_channels[0], eog_channels[1]);
}
// 2. 50Hz自适应陷波滤波 (去除工频干扰)
channel = adaptive_notch_filter(channel, SAMPLE_RATE, 50.0, 5.0);
// 3. 0.5-45Hz带通滤波 (保留有效频段)
channel = bandpass_filter(channel, SAMPLE_RATE, 0.5, 45.0);
}
// 处理EOG通道
for (auto& channel : eog_channels) {
// 0.5-30Hz带通滤波
channel = bandpass_filter(channel, SAMPLE_RATE, 0.5, 30.0);
}
// 合并处理后的通道
channels.clear();
channels.insert(channels.end(), eeg_channels.begin(), eeg_channels.end());
channels.insert(channels.end(), eog_channels.begin(), eog_channels.end());
// 计算并存储信号质量指数
float avg_sqi = 0.0f;
for (const auto& channel : eeg_channels) {
avg_sqi += calculate_snr(channel);
}
processed.sqi = avg_sqi / eeg_channels.size();
2025-07-28 11:56:50 +08:00
return processed;
}
SensorData SignalProcessor::preprocess_ecg_2lead(const SensorData& data)
{
2025-07-29 15:21:28 +08:00
const double SAMPLE_RATE = 250.0; // 2导联心电标准采样率500Hz
2025-07-28 11:56:50 +08:00
SensorData processed = data;
2025-07-29 15:21:28 +08:00
// 获取通道数据
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
if (channels.size() < 2) {
throw std::runtime_error("Invalid channel count for 2-lead ECG");
}
// 对每个导联独立进行信号处理
for (auto& channel : channels) {
// 1. 0.5Hz高通滤波 (去除基线漂移)
channel = Highpass_filter(channel, SAMPLE_RATE, 0.5);
// 2. 50Hz自适应陷波滤波 (去除工频干扰)
channel = adaptive_notch_filter(channel, SAMPLE_RATE, 50.0, 5.0);
// 3. 25-40Hz带阻滤波 (去除肌电干扰)
channel = bandstop_filter(channel, SAMPLE_RATE, 25.0, 40.0);
}
// 计算并存储信号质量指数
float avg_sqi = 0.0f;
for (const auto& channel : channels) {
avg_sqi += calculate_ecg_sqi(channel, SAMPLE_RATE);
}
processed.sqi = avg_sqi / channels.size();
2025-07-28 11:56:50 +08:00
return processed;
}
// 12导联心电预处理函数
SensorData SignalProcessor::preprocess_ecg_12lead(const SensorData& data) {
2025-07-29 15:21:28 +08:00
const double SAMPLE_RATE = 250.0; // 12导联心电标准采样率250.0Hz
2025-07-28 11:56:50 +08:00
// 创建处理后的数据结构
SensorData processed = data;
// 获取通道数据
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
if (channels.size() != 12) {
throw std::runtime_error("Invalid channel count for 12-lead ECG");
}
// 对每个导联独立进行信号处理
for (auto& channel : channels) {
// 1. 0.5Hz高通滤波 (去除基线漂移)
channel = filter(channel, SAMPLE_RATE, 0.5, 0.0, filtertype::highpass);
// 2. 50Hz自适应陷波滤波 (去除工频干扰)
channel = filter(channel, SAMPLE_RATE, 50.0, 60,filtertype::notchpass);
// 3. 25-40Hz带阻滤波 (去除肌电干扰)
channel = filter(channel, SAMPLE_RATE, 25.0, 40.0, filtertype::bandstop);
}
// 计算并存储信号质量指数
float avg_sqi = 0.0f;
for (const auto& channel : channels) {
avg_sqi += calculate_ecg_sqi(channel, SAMPLE_RATE);
}
processed.sqi = avg_sqi / channels.size();
return processed;
}
SensorData SignalProcessor::preprocess_ppg(const SensorData& data) {
// 1. 创建处理后的数据结构
2025-07-29 15:21:28 +08:00
double SAMPLE_RATE = 50;
2025-07-28 11:56:50 +08:00
SensorData processed = data;
// 2. 获取通道数据(红光和红外光)
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
if (channels.size() < 2) {
throw std::runtime_error("PPG数据需要至少两个通道红光和红外光");
}
channels[0] = remove_dc_offset(channels[0]);
// c. 带通滤波 (0.5-10Hz)
channels[0] = bandpass_filter(channels[0], 50.0, 0.5, 10.0);
// 4. 预处理红外光通道通道1
// b. 移除直流分量DC
channels[1] = remove_dc_offset(channels[1]);
// c. 带通滤波 (0.5-10Hz)
channels[1] = bandpass_filter(channels[1], 50.0, 0.5, 10.0);
// 5. 计算信号质量指数SQI
processed.sqi = calculate_PPG_sqi(channels[0], channels[1]);
// 6. 更新附加数据(心率和血氧)
// 文档中已经提供了hr和spo2值但我们可以根据信号质量进行修正
if (processed.sqi > 0.8) {
// 高质量信号,使用设备提供的值
} else {
// 低质量信号,可能需要重新计算或标记为不可靠
processed.additional.hr = 0; // 设置为0表示不可靠
processed.additional.spo2 = 0;
}
return processed;
}
SensorData SignalProcessor::preprocess_respiration(const SensorData& data)
{
2025-07-29 15:21:28 +08:00
const double SAMPLE_RATE = 100.0; // 呼吸信号标准采样率100Hz
2025-07-28 11:56:50 +08:00
SensorData processed = data;
2025-07-29 15:21:28 +08:00
// 获取通道数据
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
if (channels.empty()) {
throw std::runtime_error("No channel data for respiration");
}
// 对每个通道进行处理
for (auto& channel : channels) {
// 1. 0.1Hz高通滤波 (去除基线漂移)
channel = filter(channel, SAMPLE_RATE,0, 0.1,filtertype::highpass);
// 2. 50Hz陷波滤波 (去除工频干扰)
channel = adaptive_notch_filter(channel, SAMPLE_RATE, 50.0, 5.0);
// 3. 振幅归一化 (归一化到-1到1之间)
normalize_amplitude(channel);
}
// 计算并存储信号质量指数
processed.sqi = calculate_snr(channels[0]);
2025-07-28 11:56:50 +08:00
return processed;
}
SensorData SignalProcessor::preprocess_snore(const SensorData& data)
{
2025-07-29 15:21:28 +08:00
const double SAMPLE_RATE = 2000.0; // 鼾声信号标准采样率2000Hz
2025-07-28 11:56:50 +08:00
SensorData processed = data;
2025-07-29 15:21:28 +08:00
// 获取通道数据
auto& channel = std::get<std::vector<float>>(processed.channel_data);
// 1. 50-2000Hz带通滤波 (保留有效频段)
std::vector<float> filtered = bandpass_filter(channel, SAMPLE_RATE, 50.0, 2000.0);
// 2. 振幅归一化
normalize_amplitude(filtered);
processed.channel_data = filtered;
processed.sqi = calculate_snr(filtered);
2025-07-28 11:56:50 +08:00
return processed;
}
SensorData SignalProcessor::preprocess_stethoscope(const SensorData& data)
{
2025-07-29 15:21:28 +08:00
const double SAMPLE_RATE = 4000.0; // 听诊信号标准采样率4000Hz
2025-07-28 11:56:50 +08:00
SensorData processed = data;
2025-07-29 15:21:28 +08:00
// 获取通道数据
auto& channels = std::get<std::vector<std::vector<float>>>(processed.channel_data);
if (channels.size() < 2) {
throw std::runtime_error("Invalid channel count for stethoscope");
}
// 对每个通道进行处理
for (auto& channel : channels) {
// 1. 20-2000Hz带通滤波 (保留有效频段)
channel = bandpass_filter(channel, SAMPLE_RATE, 20.0, 2000.0);
// 2. 振幅归一化
normalize_amplitude(channel);
}
// 计算并存储信号质量指数
float avg_sqi = 0.0f;
for (const auto& channel : channels) {
avg_sqi += calculate_snr(channel);
}
processed.sqi = avg_sqi / channels.size();
2025-07-28 11:56:50 +08:00
return processed;
}
// 添加预处理辅助函数
std::vector<float> SignalProcessor::remove_dc_offset(const std::vector<float>& signal) {
if (signal.empty()) return {}; // 处理空输入
std::vector<float> result = signal;
float dc_remove = 0;
for(auto& val:signal) dc_remove += val;
dc_remove /= result.size();
for(auto& value:result) value -= dc_remove;
return result;
}
std::vector<float> SignalProcessor::apply_gain(const std::vector<float>& signal, float gain) {
std::vector<float> result = signal;
return result;
}
// 实现眼电伪迹补偿
std::vector<float> SignalProcessor::compensate_eog_artifact(const std::vector<float>& eeg,
const std::vector<float>& eog1,
const std::vector<float>& eog2) {
std::vector<float> result = eeg;
return result;
}
// 实现自适应陷波滤波器(成员函数)
std::vector<float> SignalProcessor::adaptive_notch_filter(const std::vector<float>& input,
double sample_rate,
double target_freq,
double bandwidth) {
std::vector<float> output(input.size(), 0.0f);
// 计算滤波器系数
double omega0 = 2 * M_PI * target_freq / sample_rate;
double alpha = sin(omega0) * sinh(log(2) / 2 * bandwidth * omega0 / sin(omega0));
double b0 = 1;
double b1 = -2 * cos(omega0);
double b2 = 1;
double a0 = 1 + alpha;
double a1 = -2 * cos(omega0);
double a2 = 1 - alpha;
// 归一化系数
b0 /= a0;
b1 /= a0;
b2 /= a0;
a1 /= a0;
a2 /= a0;
// 初始化滤波器状态
double x1 = 0, x2 = 0;
double y1 = 0, y2 = 0;
// 应用滤波器
for (size_t n = 0; n < input.size(); ++n) {
double x0 = input[n];
output[n] = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
// 更新状态
x2 = x1;
x1 = x0;
y2 = y1;
y1 = output[n];
}
return output;
}
std::vector<float> SignalProcessor::filter(const std::vector<float>& input,
double sample_rate,
double low_cutoff,
double high_cutoff,
filtertype type){
switch(type)
{
case filtertype::lowpass:
return Lowpass_filter(input,sample_rate,low_cutoff);
case filtertype::highpass:
return Highpass_filter(input,sample_rate,high_cutoff);
case filtertype::notchpass:
return adaptive_notch_filter(input,sample_rate,0.5*(high_cutoff+low_cutoff),high_cutoff-low_cutoff);
case filtertype::bandpass:
return bandpass_filter(input,sample_rate,low_cutoff,high_cutoff);
case filtertype::bandstop:
return bandstop_filter(input,sample_rate,low_cutoff,high_cutoff);
default:
return input;
}
}
2025-07-29 15:21:28 +08:00
//低通滤波器
2025-07-28 11:56:50 +08:00
std::vector<float> SignalProcessor::Lowpass_filter(const std::vector<float>& input,
double sample_rate,
double low_cutoff){
if (input.empty()) return input;
std::vector<float> output(input.size());
double A,f;
f = 1/sample_rate;
A = 1.0f/(1+(1/(2*M_PI*f*low_cutoff)));
output[0] = input[0];
if (input.size() > 1) output[1] = input[1];
for (size_t n = 2; n < input.size(); n++)
{
output[n] = A*input[n] + (1-A)*output[n-1];
}
return output;
}
2025-07-29 15:21:28 +08:00
//高通滤波器
2025-07-28 11:56:50 +08:00
std::vector<float> SignalProcessor::Highpass_filter(const std::vector<float>& input,
double sample_rate,
double high_cutoff){
if (input.empty()) return input;
std::vector<float> output(input.size());
double A,f;
f = 1/sample_rate;
A = 1.0f/(1+(1/(2*M_PI*f*high_cutoff)));
output[0] = input[0];
if (input.size() > 1) output[1] = input[1];
for (size_t n = 2; n < input.size(); n++)
{
output[n] = A*output[n-1] + A*(input[n]-input[n-1]);
}
return output;
}
// 带通滤波器
std::vector<float> SignalProcessor::bandpass_filter(const std::vector<float>& input,
double sample_rate,
double low_cutoff,
double high_cutoff) {
std::vector<float> output(input.size(), 0.0f);
// 计算滤波器系数
double omega0 = 2 * M_PI * (low_cutoff + high_cutoff) / (2 * sample_rate);
double BW = (high_cutoff - low_cutoff) / sample_rate;
double Q = (low_cutoff + high_cutoff) / (2 * (high_cutoff - low_cutoff));
double alpha = sin(omega0) / (2 * Q);
double b0 = alpha;
double b1 = 0;
double b2 = -alpha;
double a0 = 1 + alpha;
double a1 = -2 * cos(omega0);
double a2 = 1 - alpha;
// 归一化系数
b0 /= a0;
b1 /= a0;
b2 /= a0;
a1 /= a0;
a2 /= a0;
// 初始化滤波器状态
double x1 = 0, x2 = 0;
double y1 = 0, y2 = 0;
// 应用滤波器
for (size_t n = 0; n < input.size(); ++n) {
double x0 = input[n];
output[n] = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
// 更新状态
x2 = x1;
x1 = x0;
y2 = y1;
y1 = output[n];
}
return output;
}
//带阻滤波器
std::vector<float> SignalProcessor::bandstop_filter(const std::vector<float>& input,
double sample_rate,
double low_cutoff,
double high_cutoff) {
if (input.empty()) return {};
if (low_cutoff >= high_cutoff) {
throw std::invalid_argument("Low cutoff must be less than high cutoff");
}
std::vector<float> output(input.size(), 0.0f);
const double f0 = (low_cutoff + high_cutoff) / 2.0; // 中心频率
const double BW = high_cutoff - low_cutoff; // 带宽
const double Q = f0 / BW; // 品质因数
const double omega0 = 2 * M_PI * f0 / sample_rate;
const double alpha = sin(omega0) / (2 * Q);
// 计算滤波器系数
const double b0 = 1.0;
const double b1 = -2 * cos(omega0);
const double b2 = 1.0;
const double a0 = 1.0 + alpha;
const double a1 = -2 * cos(omega0);
const double a2 = 1.0 - alpha;
// 归一化系数
const double inv_a0 = 1.0 / a0;
const double nb0 = b0 * inv_a0;
const double nb1 = b1 * inv_a0;
const double nb2 = b2 * inv_a0;
const double na1 = a1 * inv_a0;
const double na2 = a2 * inv_a0;
// 滤波器状态
double x1 = 0.0, x2 = 0.0;
double y1 = 0.0, y2 = 0.0;
// 应用滤波器
for (size_t n = 0; n < input.size(); ++n) {
const double x0 = input[n];
const double y = nb0 * x0 + nb1 * x1 + nb2 * x2 - na1 * y1 - na2 * y2;
output[n] = static_cast<float>(y);
// 更新状态
x2 = x1;
x1 = x0;
y2 = y1;
y1 = y;
}
return output;
}
// 运动补偿
std::vector<float> SignalProcessor::compensate_motion_artifact(const std::vector<float>& ppg,
const std::vector<float>& motion) {
std::vector<float> output = ppg;
return ppg;
}
// 辅助函数计算PPG信号质量指数
float SignalProcessor::calculate_PPG_sqi(const std::vector<float>& red_channel,
const std::vector<float>& ir_channel) {
return 0.0f;
}
// 辅助函数计算信号的信噪比SNR
float SignalProcessor::calculate_snr(const std::vector<float>& signal) {
2025-07-29 15:21:28 +08:00
if (signal.size() < 2) return 0.0f;
// 计算信号功率
float signal_power = 0.0f;
for (float s : signal) {
signal_power += s * s;
}
signal_power /= signal.size();
// 计算噪声功率(通过差分近似)
float noise_power = 0.0f;
for (size_t i = 1; i < signal.size(); ++i) {
float diff = signal[i] - signal[i-1];
noise_power += diff * diff;
}
noise_power /= (signal.size() - 1);
// 计算SNR (dB)
if (noise_power < 1e-6f) return 1.0f; // 避免除以零
float snr_db = 10.0f * std::log10(signal_power / noise_power);
// 将SNR转换为0-1的质量指数
return std::clamp(snr_db / 40.0f, 0.0f, 1.0f); // 假设40dB为最大质量
2025-07-28 11:56:50 +08:00
}
// 辅助函数:计算两个信号的相关系数
float SignalProcessor::calculate_correlation(const std::vector<float>& x,
const std::vector<float>& y) {
return 0.0f;
}
2025-07-29 15:21:28 +08:00
//ecg sqi
2025-07-28 11:56:50 +08:00
float SignalProcessor::calculate_ecg_sqi(const std::vector<float>& signal, double sample_rate) {
// 1. 检查输入有效性
if (signal.empty()) return 0.0f;
if (sample_rate <= 0) return 0.0f;
const size_t min_samples = static_cast<size_t>(0.5 * sample_rate); // 至少0.5秒数据
if (signal.size() < min_samples) return 0.0f;
// 3. 幅度检测(检测导联脱落或信号丢失)
float max_val = *std::max_element(signal.begin(), signal.end());
float min_val = *std::min_element(signal.begin(), signal.end());
float pp_amp = max_val - min_val; // 峰峰值幅度
if (pp_amp < 0.1f) return 0.0f; // 幅度过低假设单位是mV
// 4. 噪声水平评估
float noise_level = 0.0f;
for (size_t i = 1; i < signal.size(); ++i) {
float diff = signal[i] - signal[i-1];
noise_level += diff * diff;
}
noise_level = std::sqrt(noise_level / signal.size());
// 5. 功率谱分析QRS频带能量比
float total_power = 0.0f;
float qrs_power = 0.0f;
for (float s : signal) {
total_power += s * s;
}
// 5-20Hz带通滤波QRS主要能量带
std::vector<float> qrs_band = bandpass_filter(signal, sample_rate, 5.0, 20.0);
for (float s : qrs_band) {
qrs_power += s * s;
}
float qrs_ratio = (total_power > 0) ? qrs_power / total_power : 0.0f;
// 6. 基于特征的SQI计算
float sqi = 0.0f;
// 幅度因子0.5-5mV为理想范围
float amp_factor = std::clamp((pp_amp - 0.5f) / 4.5f, 0.0f, 1.0f);
// 噪声因子(经验阈值)
float noise_factor = std::exp(-noise_level * 50.0f);
// QRS能量因子
float qrs_factor = std::clamp((qrs_ratio - 0.3f) * 2.5f, 0.0f, 1.0f);
// 综合评分(加权平均)
sqi = 0.4f * amp_factor + 0.4f * qrs_factor + 0.2f * noise_factor;
// 确保在[0,1]范围内
return std::clamp(sqi, 0.0f, 1.0f);
2025-07-29 15:21:28 +08:00
}
void SignalProcessor::normalize_amplitude(std::vector<float>& signal) {
if (signal.empty()) return;
// 找到最大绝对值
float max_val = 0.0f;
for (float value : signal) {
float abs_val = std::abs(value);
if (abs_val > max_val) {
max_val = abs_val;
}
}
// 归一化处理
if (max_val > 0.0f) {
float scale = 1.0f / max_val;
for (float& value : signal) {
value *= scale;
}
}
}